3.74 \(\int \frac{(e+f x^2)^{3/2}}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=224 \[ \frac{e^{3/2} \sqrt{c+d x^2} (b e-a f) \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b c-a d) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{e+f x^2} (d e-c f) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{d} \sqrt{c+d x^2} (b c-a d) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

-(((d*e - c*f)*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(Sqrt[c]*Sqrt[d]*(b*c
- a*d)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])) + (e^(3/2)*(b*e - a*f)*Sqrt[c + d*x^2]*Elliptic
Pi[1 - (b*e)/(a*f), ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*(b*c - a*d)*Sqrt[f]*Sqrt[(e*(c + d*x^2
))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.111799, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094, Rules used = {542, 539, 411} \[ \frac{e^{3/2} \sqrt{c+d x^2} (b e-a f) \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b c-a d) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{e+f x^2} (d e-c f) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{d} \sqrt{c+d x^2} (b c-a d) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x^2)^(3/2)/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-(((d*e - c*f)*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(Sqrt[c]*Sqrt[d]*(b*c
- a*d)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])) + (e^(3/2)*(b*e - a*f)*Sqrt[c + d*x^2]*Elliptic
Pi[1 - (b*e)/(a*f), ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*(b*c - a*d)*Sqrt[f]*Sqrt[(e*(c + d*x^2
))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

Rule 542

Int[((e_) + (f_.)*(x_)^2)^(3/2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e -
a*f)/(b*c - a*d), Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), In
t[Sqrt[e + f*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\left (e+f x^2\right )^{3/2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx &=\frac{(b e-a f) \int \frac{\sqrt{e+f x^2}}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{b c-a d}-\frac{(d e-c f) \int \frac{\sqrt{e+f x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{b c-a d}\\ &=-\frac{(d e-c f) \sqrt{e+f x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{d} (b c-a d) \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac{e^{3/2} (b e-a f) \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c (b c-a d) \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [C]  time = 1.27748, size = 492, normalized size = 2.2 \[ \frac{\sqrt{\frac{d}{c}} \left (i a \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \left (b e (2 c f-d e)-a c f^2\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+i a^2 c f^2 \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )+i b^2 c e^2 \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )+a b d e^2 x \sqrt{\frac{d}{c}}+a b d e f x^3 \sqrt{\frac{d}{c}}-i a b e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (c f-d e) E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-2 i a b c e f \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-a b c e f x \sqrt{\frac{d}{c}}-a b c f^2 x^3 \sqrt{\frac{d}{c}}\right )}{a b d \sqrt{c+d x^2} \sqrt{e+f x^2} (a d-b c)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e + f*x^2)^(3/2)/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

(Sqrt[d/c]*(a*b*d*Sqrt[d/c]*e^2*x - a*b*c*Sqrt[d/c]*e*f*x + a*b*d*Sqrt[d/c]*e*f*x^3 - a*b*c*Sqrt[d/c]*f^2*x^3
- I*a*b*e*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)
] + I*a*(-(a*c*f^2) + b*e*(-(d*e) + 2*c*f))*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d
/c]*x], (c*f)/(d*e)] + I*b^2*c*e^2*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d), I*ArcSinh[S
qrt[d/c]*x], (c*f)/(d*e)] - (2*I)*a*b*c*e*f*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d), I*
ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + I*a^2*c*f^2*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d
), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*b*d*(-(b*c) + a*d)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.03, size = 630, normalized size = 2.8 \begin{align*}{\frac{1}{abc \left ( ad-bc \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ( -{x}^{3}abc{f}^{2}\sqrt{-{\frac{d}{c}}}+{x}^{3}abdef\sqrt{-{\frac{d}{c}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ){a}^{2}c{f}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-2\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) abcef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) abd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) abcef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) abd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ){a}^{2}c{f}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+2\,{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) abcef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ){b}^{2}c{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-xabcef\sqrt{-{\frac{d}{c}}}+xabd{e}^{2}\sqrt{-{\frac{d}{c}}} \right ) \sqrt{d{x}^{2}+c}\sqrt{f{x}^{2}+e}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e)^(3/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x)

[Out]

(-x^3*a*b*c*f^2*(-d/c)^(1/2)+x^3*a*b*d*e*f*(-d/c)^(1/2)+EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a^2*c*f^2*((
d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-2*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*c*e*f*((d*x^2+c)/c)^(1/2
)*((f*x^2+e)/e)^(1/2)+EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1
/2)+EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*c*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticE(x*(-
d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticPi(x*(-d/c)^(1/2),b*c/a/
d,(-f/e)^(1/2)/(-d/c)^(1/2))*a^2*c*f^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+2*EllipticPi(x*(-d/c)^(1/2),b*c
/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*a*b*c*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticPi(x*(-d/c)^(1/2),b*
c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b^2*c*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-x*a*b*c*e*f*(-d/c)^(1/2)+x*
a*b*d*e^2*(-d/c)^(1/2))*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2)/b/a/c/(-d/c)^(1/2)/(a*d-b*c)/(d*f*x^4+c*f*x^2+d*e*x^2+
c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x^{2} + e\right )}^{\frac{3}{2}}}{{\left (b x^{2} + a\right )}{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(3/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^2 + e)^(3/2)/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(3/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e)**(3/2)/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x^{2} + e\right )}^{\frac{3}{2}}}{{\left (b x^{2} + a\right )}{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(3/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^2 + e)^(3/2)/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)